APPLES

You are a apple farmer in Georgia. Your farm is open to the public, and people come and pick their own apples at your farm. You need to design a management plan to increase pollinator activity on your farm to increase apple production.

Sun Requirements: Full sun Soil Type: Loamy Soil pH: Neutral Bloom Time: Summer, fall Flower Color: Pink, white Hardiness Zones: 3, 4, 5, 6, 7, 8

https://www.almanac.com/plant/apples

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

MAP I	EGEND	MAP INFORMATION
Area of Interest (AOI) Area of Interest (AOI)	Spoil AreaStony Spot	The soil surveys that comprise your AOI were mapped at 1:20,000.
Area of Interest (AOI) Soils Soil Map Unit Polygons Soil Map Unit Lines Soil Map Unit Lines Soil Map Unit Points Soil Map Unit Points Special Features Image: Special Polygons Soil Map Unit Points Special Polygons Image: Special Polygons <td>Image: Spoil AreaImage: Spoil Area<th< td=""><td> The soil surveys that comprise your AOI were mapped at 1:20,000. Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of sc line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detail scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator rojection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data of the version date(s) listed below. Soil Survey Area: Fannin and Union Counties, Georgia Survey Area Data: Version 13, Jun 9, 2020 Soil map units are labeled (as space allows) for map scales 1:50 000 or larger </td></th<></td>	Image: Spoil AreaImage: Spoil Area <th< td=""><td> The soil surveys that comprise your AOI were mapped at 1:20,000. Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of sc line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detail scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator rojection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data of the version date(s) listed below. Soil Survey Area: Fannin and Union Counties, Georgia Survey Area Data: Version 13, Jun 9, 2020 Soil map units are labeled (as space allows) for map scales 1:50 000 or larger </td></th<>	 The soil surveys that comprise your AOI were mapped at 1:20,000. Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of sc line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detail scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator rojection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data of the version date(s) listed below. Soil Survey Area: Fannin and Union Counties, Georgia Survey Area Data: Version 13, Jun 9, 2020 Soil map units are labeled (as space allows) for map scales 1:50 000 or larger
 Saline Spot Sandy Spot Severely Eroded Spot Sinkhole Slide or Slip Sodic Spot 		Date(s) aerial images were photographed: Mar 20, 2015—C 26, 2017 The orthophoto or other base map on which the soil lines wer compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
Aa	Arkaqua loam, frequently flooded	2.3	4.3%
CIC	Clifton-Evard complex, 6 to 10 percent slopes	6.6	12.4%
CIE	Clifton-Evard complex, 10 to 25 percent slopes	13.8	25.7%
CxF	Cowee-Evard complex, 25 to 45 percent slopes	30.9	57.6%
Totals for Area of Interest		53.6	100.0%

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

MAP	INF	ORM		ON
-----	-----	-----	--	-----------

The soil surveys that comprise your AOI were mapped at 1:20,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Fannin and Union Counties, Georgia Survey Area Data: Version 13, Jun 9, 2020

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Mar 20, 2015—Oct 26, 2017

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Soil Health - Soil Reaction (pH)

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
Aa	Arkaqua loam, frequently flooded	5.5	2.3	4.3%
CIC	Clifton-Evard complex, 6 to 10 percent slopes	5.5	6.6	12.4%
CIE	Clifton-Evard complex, 10 to 25 percent slopes	5.5	13.8	25.7%
CxF	Cowee-Evard complex, 25 to 45 percent slopes	4.8	30.9	57.6%
Totals for Area of Interest			53.6	100.0%

Description

Soil reaction (pH) is a measure of acidity or alkalinity. Chemically, it is a measurement of the hydrogen ion activity [H+] in the soil solution. The pH scale ranges from 0 to 14; a pH of 7 is considered neutral. If pH values are greater than 7, the solution is considered basic or alkaline; if they are below 7, the solution is acidic.

Significance:

The acidity or alkalinity of a soil affects the availability of plant nutrients, the activity of microorganisms, and the solubility of soil minerals (Brady, 1990). In general, pH values between 6 and 7.5 are optimum for general crop growth. Sitespecific interpretations for soil health will depend on specific land uses and crop tolerances. In acid soils, calcium and magnesium, nitrate-nitrogen, phosphorus, boron, and molybdenum are deficient but aluminum and manganese are abundant, in some cases at levels toxic to some plants (USDA-NRCS, 2008). Phosphorus, iron, copper, zinc, and boron are frequently deficient in very alkaline soils. Bacterial populations and activity decline at low pH levels, whereas fungi adapt to a large range of pH (acidic and alkaline). Nitrification and nitrogen fixation are also inhibited by low pH (USDA-NRCS, 2008). To increase pH, liming, adding organic residues rich in basic cations, and rotating crops to interrupt the acidifying effect of leguminous crops are effective. Applying ammonium-based fertilizers, urea, sulfur, or ferrous sulfate; irrigating with acidifying fertilizers; or using acidifying residues (acid moss, pine needles, sawdust) decrease soil pH (USDA-NRCS, 2008).

Factors Affecting Soil Reaction:

Inherent factors.—The natural soil pH reflects the combined effects of climate, vegetation, topography, parent material, and time. Temperature and rainfall are two major factors that control the intensity of leaching and soil mineral weathering. Acidity is generally associated with leached soils, and alkalinity is generally associated with soils in drier regions. In arid climates, soil weathering and leaching are less intense, cations accumulate, and the soil becomes neutral or alkaline. In soils where the pH is less than 5, aluminum becomes soluble and reacts with water to produce hydrogen ions. Sandy soils may acidify more easily compared to clay soils because they have a low buffering capacity and tend to leach more readily. Vegetation has an effect on soil pH through the type of organic matter that is added; certain types of vegetation are soil acidifying (USDA-NRCS, 2008).

Dynamic factors.—The conversion of uncultivated land into cropland can result in drastic pH changes after a few years. These changes are caused by the removal of cations by crops, the acceleration of leaching, the effect of fertilizers and amendments, and the variations in organic matter content and soil buffering capacity (USDA-NRCS, 2008). Inorganic amendments (lime and gypsum) and organic amendments rich in cations increase soil pH. Ammonium from organic matter mineralization (nitrification), ammonium-based fertilizers, and sulfur compounds lower the pH. High rates of water percolation and infiltration can increase the leaching of cations and accelerate soil acidification.

Measurement:

The pH reported here is measured using the 1:1 soil to water ratio method (Soil Survey Staff, 2014). A crushed soil sample is mixed with an equal amount of water, and the pH of the suspension is measured.

References:

Brady, N.C. 1990. The nature and properties of soils. 10th ed. Macmillan Publishers, NY.

Smith, J.L., and J.W. Doran. 1996. Measurement and use of pH and electrical conductivity for soil quality analysis. In: J.W. Doran and A.J. Jones (eds.) Methods for Assessing Soil Quality. Soil Science Society of America Special Publication 49:169-185.

Soil Survey Staff. 2014. Kellogg Soil Survey Laboratory methods manual. Soil Survey Investigations Report No. 42, Version 5.0. R. Burt and Soil Survey Staff (eds.). U.S. Department of Agriculture, Natural Resources Conservation Service.

U.S. Department of Agriculture, Natural Resources Conservation Service. 2008. Soil quality indicators—Soil pH.

Rating Options

Aggregation Method: Dominant Component Component Percent Cutoff: None Specified Tie-break Rule: Higher Interpret Nulls as Zero: No Layer Options (Horizon Aggregation Method): Surface Layer (Not applicable)

BELL PEPPER

You are a pepper farmer in Georgia. You grow peppers to sell to local grocery stores. You need to design a management plan to increase pollinator activity on your farm to increase pepper production.

Sun Requirements: Full sun Soil Type: Loamy Soil pH: Acidic, neutral Bloom Time: Summer Flower Color: White Hardiness Zones: 4, 5, 6, 7, 8, 9, 10, 11

https://www.almanac.com/plant/bell-peppers

National Cooperative Soil Survey

Conservation Service

MAP LE	EGEND	MAP INFORMATION
Area of Interest (ACI) △ Area of Interest (ACI) Soils ○ Soil Map Unit Polygons ○ Soil Map Unit Polygons ○ Soil Map Unit Points ○ Blowout ○ Blowout ○ Blowout ○ Blowout ○ Clay Spot ○ Clayed Depression ○ Clavel Pit ○ Marsh or swamp ○ Micelaneous Water ○ Picennial Water ○ Saine Spot ○ Saine Spot ○ Saine Spot ○ Severely Eroded Spot ○ Sinkhole	EGEND■Spoil Area●Stony Spot●Very Stony Spot●Vet Spot●Other●Special Line FeaturesVater FeaturesStreams and CanalsTransportationInterstate Highways●Najor Roads●Local Roads●Aerial Photography	<section-header><section-header><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></section-header></section-header>
B Sodic Spot		

USDA Nat

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
BnB	Bonifay sand, 0 to 8 percent slopes	0.0	0.0%
CwE	Cowarts-Nankin-Ailey complex, 8 to 25 percent slopes	4.2	9.1%
DoB	Dothan loamy sand, 2 to 5 percent slopes	20.4	44.1%
FuB	Fuquay loamy sand, 0 to 5 percent slopes	7.5	16.3%
КВ	Kinston-Bibb association, 0 to 2 percent slopes, frequently flooded	4.7	10.2%
NkC2	Nankin sandy loam, 5 to 8 percent slopes, moderately eroded	1.9	4.2%
TfB	Tifton loamy sand, 2 to 5 percent slopes	0.8	1.8%
TnC2	Tifton sandy loam, 5 to 8 percent slopes, eroded	3.5	7.5%
W	Water	3.2	6.9%
Totals for Area of Interest	·	46.2	100.0%

National Cooperative Soil Survey

Conservation Service

MAP	INFORM	IATION
-----	--------	---------------

The soil surveys that comprise your AOI were mapped at 1:20,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Bleckley, Dodge, and Telfair Counties, Georgia

Survey Area Data: Version 15, Jun 8, 2020

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Dec 3, 2015—Feb 13, 2017

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Soil Health - Soil Reaction (pH)

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
BnB	Bonifay sand, 0 to 8 percent slopes	5.0	0.0	0.0%
CwE	Cowarts-Nankin-Ailey complex, 8 to 25 percent slopes	5.3	4.2	9.1%
DoB	Dothan loamy sand, 2 to 5 percent slopes	5.3	20.4	44.1%
FuB	Fuquay loamy sand, 0 to 5 percent slopes	5.5	7.5	16.3%
КВ	Kinston-Bibb association, 0 to 2 percent slopes, frequently flooded	5.5	4.7	10.2%
NkC2	Nankin sandy loam, 5 to 8 percent slopes, moderately eroded	5.3	1.9	4.2%
TfB	Tifton loamy sand, 2 to 5 percent slopes	6.0	0.8	1.8%
TnC2	Tifton sandy loam, 5 to 8 percent slopes, eroded	5.5	3.5	7.5%
W	Water		3.2	6.9%
Totals for Area of Intere	est		46.2	100.0%

Description

Soil reaction (pH) is a measure of acidity or alkalinity. Chemically, it is a measurement of the hydrogen ion activity [H+] in the soil solution. The pH scale ranges from 0 to 14; a pH of 7 is considered neutral. If pH values are greater than 7, the solution is considered basic or alkaline; if they are below 7, the solution is acidic.

Significance:

The acidity or alkalinity of a soil affects the availability of plant nutrients, the activity of microorganisms, and the solubility of soil minerals (Brady, 1990). In general, pH values between 6 and 7.5 are optimum for general crop growth. Sitespecific interpretations for soil health will depend on specific land uses and crop tolerances. In acid soils, calcium and magnesium, nitrate-nitrogen, phosphorus, boron, and molybdenum are deficient but aluminum and manganese are abundant, in some cases at levels toxic to some plants (USDA-NRCS, 2008). Phosphorus, iron, copper, zinc, and boron are frequently deficient in very alkaline soils. Bacterial populations and activity decline at low pH levels, whereas fungi adapt to a large range of pH (acidic and alkaline). Nitrification and nitrogen fixation are also inhibited by low pH (USDA-NRCS, 2008). To increase pH, liming, adding organic residues rich in basic cations, and rotating crops to interrupt the acidifying effect of leguminous crops are effective. Applying ammonium-based fertilizers, urea, sulfur, or ferrous sulfate; irrigating with acidifying fertilizers; or using acidifying residues (acid moss, pine needles, sawdust) decrease soil pH (USDA-NRCS, 2008).

Factors Affecting Soil Reaction:

Inherent factors.—The natural soil pH reflects the combined effects of climate, vegetation, topography, parent material, and time. Temperature and rainfall are two major factors that control the intensity of leaching and soil mineral weathering. Acidity is generally associated with leached soils, and alkalinity is generally associated with soils in drier regions. In arid climates, soil weathering and leaching are less intense, cations accumulate, and the soil becomes neutral or alkaline. In soils where the pH is less than 5, aluminum becomes soluble and reacts with water to produce hydrogen ions. Sandy soils may acidify more easily compared to clay soils because they have a low buffering capacity and tend to leach more readily. Vegetation has an effect on soil pH through the type of organic matter that is added; certain types of vegetation are soil acidifying (USDA-NRCS, 2008).

Dynamic factors.—The conversion of uncultivated land into cropland can result in drastic pH changes after a few years. These changes are caused by the removal of cations by crops, the acceleration of leaching, the effect of fertilizers and amendments, and the variations in organic matter content and soil buffering capacity (USDA-NRCS, 2008). Inorganic amendments (lime and gypsum) and organic amendments rich in cations increase soil pH. Ammonium from organic matter mineralization (nitrification), ammonium-based fertilizers, and sulfur compounds lower the pH. High rates of water percolation and infiltration can increase the leaching of cations and accelerate soil acidification.

Measurement:

The pH reported here is measured using the 1:1 soil to water ratio method (Soil Survey Staff, 2014). A crushed soil sample is mixed with an equal amount of water, and the pH of the suspension is measured.

References:

Brady, N.C. 1990. The nature and properties of soils. 10th ed. Macmillan Publishers, NY.

Smith, J.L., and J.W. Doran. 1996. Measurement and use of pH and electrical conductivity for soil quality analysis. In: J.W. Doran and A.J. Jones (eds.) Methods for Assessing Soil Quality. Soil Science Society of America Special Publication 49:169-185.

Soil Survey Staff. 2014. Kellogg Soil Survey Laboratory methods manual. Soil Survey Investigations Report No. 42, Version 5.0. R. Burt and Soil Survey Staff (eds.). U.S. Department of Agriculture, Natural Resources Conservation Service.

U.S. Department of Agriculture, Natural Resources Conservation Service. 2008. Soil quality indicators—Soil pH.

Rating Options

Aggregation Method: Dominant Component Component Percent Cutoff: None Specified Tie-break Rule: Higher Interpret Nulls as Zero: No Layer Options (Horizon Aggregation Method): Surface Layer (Not applicable)

BLUEBERRIES

You are a blueberry farmer in Georgia. Your farm is open to the public, and people come and pick their own blueberries at your farm. You need to design a management plan to increase pollinator activity on your farm to increase blueberry production.

Sun Requirements: Full sun Soil Type: Any Soil pH: Acidic Bloom Time: Spring, summer Flower Color: White, pink Hardiness Zones: 3, 4, 5, 6, 7, 8, 9

https://www.almanac.com/plant/blueberries

Natural Resources Conservation Service

USDA

Web Soil Survey National Cooperative Soil Survey

MAP	LEGEND	MAP INFORMATION
Area of Interest (AOI) Area of Interest (AOI)	Spoil Area	The soil surveys that comprise your AOI were mapped at 1:15,800.
Area of Interest (AOI) Soils Soil Map Unit Polygons ✓ Soil Map Unit Polygons ✓ Soil Map Unit Points Special Point Features Image: Special Point Features Image: Special Point Point Points Image: Special Point Point Points Image: Special Point Poin	 Stony Spot Stony Spot Very Stony Spot Wet Spot Other Special Line Features Water Features Water Features Streams and Canals Transportation Rails Interstate Highways US Routes Local Roads Local Roads Eackground Aerial Photography 	 1:15,800. Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as th Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data of the version date(s) listed below. Soil Survey Area: Gwinnett County, Georgia Survey Area Data: Version 11, Jun 9, 2020 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Apr 10, 2019—Ma 19, 2019 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor
 Severely Eroded Spot Sinkhole Slide or Slip Sodic Spot 		compiled and digitized probably differs from the backg imagery displayed on these maps. As a result, some r shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
AmC2	Appling sandy loam, 6 to 10 percent slopes, moderately eroded	7.2	52.7%
АрВ	Appling-Hard Labor complex, 2 to 6 percent slopes	3.7	26.8%
Cfs Chewacla silt loam, 0 to 2 percent slopes, frequently flooded		2.8	20.4%
Totals for Area of Interest		13.6	100.0%

USDA Natural Resources Conservation Service

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:15,800.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Gwinnett County, Georgia Survey Area Data: Version 11, Jun 9, 2020

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Apr 10, 2019—May 19, 2019

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Soil Health - Soil Reaction (pH)

	-			
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
AmC2	Appling sandy loam, 6 to 10 percent slopes, moderately eroded	5.2	7.2	52.7%
АрВ	Appling-Hard Labor complex, 2 to 6 percent slopes	5.2	3.7	26.8%
Cfs	Chewacla silt loam, 0 to 2 percent slopes, frequently flooded	5.5	2.8	20.4%
Totals for Area of Intere	st		13.6	100.0%

Description

Soil reaction (pH) is a measure of acidity or alkalinity. Chemically, it is a measurement of the hydrogen ion activity [H+] in the soil solution. The pH scale ranges from 0 to 14; a pH of 7 is considered neutral. If pH values are greater than 7, the solution is considered basic or alkaline; if they are below 7, the solution is acidic.

Significance:

The acidity or alkalinity of a soil affects the availability of plant nutrients, the activity of microorganisms, and the solubility of soil minerals (Brady, 1990). In general, pH values between 6 and 7.5 are optimum for general crop growth. Sitespecific interpretations for soil health will depend on specific land uses and crop tolerances. In acid soils, calcium and magnesium, nitrate-nitrogen, phosphorus, boron, and molybdenum are deficient but aluminum and manganese are abundant, in some cases at levels toxic to some plants (USDA-NRCS, 2008). Phosphorus, iron, copper, zinc, and boron are frequently deficient in very alkaline soils. Bacterial populations and activity decline at low pH levels, whereas fungi adapt to a large range of pH (acidic and alkaline). Nitrification and nitrogen fixation are also inhibited by low pH (USDA-NRCS, 2008). To increase pH, liming, adding organic residues rich in basic cations, and rotating crops to interrupt the acidifying effect of leguminous crops are effective. Applying ammonium-based fertilizers, urea, sulfur, or ferrous sulfate; irrigating with acidifying fertilizers; or using acidifying residues (acid moss, pine needles, sawdust) decrease soil pH (USDA-NRCS, 2008).

Factors Affecting Soil Reaction:

Inherent factors.—The natural soil pH reflects the combined effects of climate, vegetation, topography, parent material, and time. Temperature and rainfall are two major factors that control the intensity of leaching and soil mineral weathering. Acidity is generally associated with leached soils, and alkalinity is generally associated with soils in drier regions. In arid climates, soil weathering and leaching are less intense, cations accumulate, and the soil becomes neutral or alkaline. In soils where the pH is less than 5, aluminum becomes soluble and reacts with water to produce hydrogen ions. Sandy soils may acidify more easily compared to clay soils because they have a low buffering capacity and tend to leach more readily. Vegetation has an effect on soil pH through the type of organic matter that is added; certain types of vegetation are soil acidifying (USDA-NRCS, 2008).

Dynamic factors.—The conversion of uncultivated land into cropland can result in drastic pH changes after a few years. These changes are caused by the removal of cations by crops, the acceleration of leaching, the effect of fertilizers and amendments, and the variations in organic matter content and soil buffering capacity (USDA-NRCS, 2008). Inorganic amendments (lime and gypsum) and organic amendments rich in cations increase soil pH. Ammonium from organic matter mineralization (nitrification), ammonium-based fertilizers, and sulfur compounds lower the pH. High rates of water percolation and infiltration can increase the leaching of cations and accelerate soil acidification.

Measurement:

The pH reported here is measured using the 1:1 soil to water ratio method (Soil Survey Staff, 2014). A crushed soil sample is mixed with an equal amount of water, and the pH of the suspension is measured.

References:

Brady, N.C. 1990. The nature and properties of soils. 10th ed. Macmillan Publishers, NY.

Smith, J.L., and J.W. Doran. 1996. Measurement and use of pH and electrical conductivity for soil quality analysis. In: J.W. Doran and A.J. Jones (eds.) Methods for Assessing Soil Quality. Soil Science Society of America Special Publication 49:169-185.

Soil Survey Staff. 2014. Kellogg Soil Survey Laboratory methods manual. Soil Survey Investigations Report No. 42, Version 5.0. R. Burt and Soil Survey Staff (eds.). U.S. Department of Agriculture, Natural Resources Conservation Service.

U.S. Department of Agriculture, Natural Resources Conservation Service. 2008. Soil quality indicators—Soil pH.

Rating Options

Aggregation Method: Dominant Component Component Percent Cutoff: None Specified Tie-break Rule: Higher Interpret Nulls as Zero: No Layer Options (Horizon Aggregation Method): Depth Range (Weighted Average) Top Depth: 1 Bottom Depth: 25 Units of Measure: Inches

BROCCOLI

You are a broccoli farmer in Georgia. You grow broccoli to sell to local grocery stores. You need to design a management plan to increase pollinator activity on your farm to increase broccoli production.

Sun Requirements: Full sun Soil Type: Sandy Soil pH: Acidic, neutral Bloom Time: Spring, fall Flower Color: Yellow Hardiness Zones: 3, 4, 5, 6, 7, 8, 9, 10

https://www.almanac.com/plant/broccoli

Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI	
Cst	Chewacla and Starr soils	1.7	12.5%	
СуВ2	Cecil sandy loam, 2 to 6 percent slopes, moderately eroded	0.0	0.2%	
DhC2	Davidson clay loam, 6 to 10 percent slopes, moderately eroded	0.2	1.5%	
EjB2	Enon soils, 2 to 6 percent slopes, eroded	8.7	61.8%	
HYB2	Helena sandy loam, 2 to 6 percent slopes, eroded	0.3	1.8%	
W	Water	0.9	6.4%	
WiE	Wilkes soils, 10 to 25 percent slopes	2.2	15.8%	
Totals for Area of Interest		14.0	100.0%	

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey 6/24/2021 Page 1 of 6

The soil surveys that comprise your AOI were mapped at 1:20,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Baldwin, Jones, and Putnam Counties, Georgia

Survey Area Data: Version 17, Jun 8, 2020

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Feb 17, 2016—Jan 12, 2017

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Soil Health - Soil Reaction (pH)

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI	
Cst	Chewacla and Starr soils	5.5	1.7	12.5%	
CyB2	Cecil sandy loam, 2 to 6 percent slopes, moderately eroded	5.5	0.0	0.2%	
DhC2	Davidson clay loam, 6 to 10 percent slopes, moderately eroded	5.3	0.2	1.5%	
EjB2	Enon soils, 2 to 6 percent slopes, eroded	5.8	8.7	61.8%	
HYB2	Helena sandy loam, 2 to 6 percent slopes, eroded	5.1	0.3	1.8%	
W	Water		0.9	6.4%	
WiE	Wilkes soils, 10 to 25 percent slopes	5.8	2.2	15.8%	
Totals for Area of Interest			14.0	100.0%	

Description

Soil reaction (pH) is a measure of acidity or alkalinity. Chemically, it is a measurement of the hydrogen ion activity [H+] in the soil solution. The pH scale ranges from 0 to 14; a pH of 7 is considered neutral. If pH values are greater than 7, the solution is considered basic or alkaline; if they are below 7, the solution is acidic.

Significance:

The acidity or alkalinity of a soil affects the availability of plant nutrients, the activity of microorganisms, and the solubility of soil minerals (Brady, 1990). In general, pH values between 6 and 7.5 are optimum for general crop growth. Sitespecific interpretations for soil health will depend on specific land uses and crop tolerances. In acid soils, calcium and magnesium, nitrate-nitrogen, phosphorus, boron, and molybdenum are deficient but aluminum and manganese are abundant, in some cases at levels toxic to some plants (USDA-NRCS, 2008). Phosphorus, iron, copper, zinc, and boron are frequently deficient in very alkaline soils. Bacterial populations and activity decline at low pH levels, whereas fungi adapt to a large range of pH (acidic and alkaline). Nitrification and nitrogen fixation are also inhibited by low pH (USDA-NRCS, 2008). To increase pH, liming, adding organic residues rich in basic cations, and rotating crops to interrupt the acidifying effect of leguminous crops are effective. Applying ammonium-based fertilizers, urea, sulfur, or ferrous sulfate; irrigating with acidifying fertilizers; or using acidifying residues (acid moss, pine needles, sawdust) decrease soil pH (USDA-NRCS, 2008).

Factors Affecting Soil Reaction:

Inherent factors.—The natural soil pH reflects the combined effects of climate, vegetation, topography, parent material, and time. Temperature and rainfall are two major factors that control the intensity of leaching and soil mineral weathering. Acidity is generally associated with leached soils, and alkalinity is generally associated with soils in drier regions. In arid climates, soil weathering and leaching are less intense, cations accumulate, and the soil becomes neutral or alkaline. In soils where the pH is less than 5, aluminum becomes soluble and reacts with water to produce hydrogen ions. Sandy soils may acidify more easily compared to clay soils because they have a low buffering capacity and tend to leach more readily. Vegetation has an effect on soil pH through the type of organic matter that is added; certain types of vegetation are soil acidifying (USDA-NRCS, 2008).

Dynamic factors.—The conversion of uncultivated land into cropland can result in drastic pH changes after a few years. These changes are caused by the removal of cations by crops, the acceleration of leaching, the effect of fertilizers and amendments, and the variations in organic matter content and soil buffering capacity (USDA-NRCS, 2008). Inorganic amendments (lime and gypsum) and organic amendments rich in cations increase soil pH. Ammonium from organic matter mineralization (nitrification), ammonium-based fertilizers, and sulfur compounds lower the pH. High rates of water percolation and infiltration can increase the leaching of cations and accelerate soil acidification.

Measurement:

The pH reported here is measured using the 1:1 soil to water ratio method (Soil Survey Staff, 2014). A crushed soil sample is mixed with an equal amount of water, and the pH of the suspension is measured.

References:

Brady, N.C. 1990. The nature and properties of soils. 10th ed. Macmillan Publishers, NY.

Smith, J.L., and J.W. Doran. 1996. Measurement and use of pH and electrical conductivity for soil quality analysis. In: J.W. Doran and A.J. Jones (eds.) Methods for Assessing Soil Quality. Soil Science Society of America Special Publication 49:169-185.

Soil Survey Staff. 2014. Kellogg Soil Survey Laboratory methods manual. Soil Survey Investigations Report No. 42, Version 5.0. R. Burt and Soil Survey Staff (eds.). U.S. Department of Agriculture, Natural Resources Conservation Service.

U.S. Department of Agriculture, Natural Resources Conservation Service. 2008. Soil quality indicators—Soil pH.

Rating Options

Aggregation Method: Dominant Component Component Percent Cutoff: None Specified Tie-break Rule: Higher Interpret Nulls as Zero: No Layer Options (Horizon Aggregation Method): Surface Layer (Not applicable)

WATERMELON

You are a watermelon farmer in Georgia. You grow watermelons to sell at a local farmers market. You need to design a management plan to increase pollinator activity on your farm to increase watermelon production.

Sun Requirements: Full sun Soil Type: Sandy Soil pH: Acidic, neutral Bloom Time: Summer Flower Color: Yellow Hardiness Zones: 3, 4, 5, 6, 7, 8, 9, 10, 11

https://www.almanac.com/plant/watermelon

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

MAF	P LEGEND	MAP INFORMATION
Area of Interest (AOI) Area of Interest (AOI)	Spoil Area	The soil surveys that comprise your AOI were mapped at 1:20,000.
Soils Soil Map Unit Polygo	Nery Stony Spot	Warning: Soil Map may not be valid at this scale.
Soil Map Unit Lines Soil Map Unit Points	Wet Spot △ Other	misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed
Special Point Features Blowout	Water Features Streams and Canals	scale. Please rely on the bar scale on each map sheet for map
Borrow Pit Clay Spot	Transportation +++ Rails	measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
Gravel Pit	Interstate HighwaysUS Routes	Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercato
Gravelly Spot Landfill	Major RoadsLocal Roads	distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.
Marsh or swamp	Background Aerial Photography	This product is generated from the USDA-NRCS certified data a of the version date(s) listed below.
Miscellaneous Water		Soil Survey Area: Glascock and Jefferson Counties, Georgia Survey Area Data: Version 14, Jun 8, 2020
 Perenniai vvater Rock Outcrop 		Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.
Saline Spot		2017 The orthophoto or other base map on which the soil lines were
 Severely Eroded Spo Sinkhole 	t	compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
 Slide or Slip Sodic Spot 		

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI		
FuC	Fuquay loamy sand, 5 to 8 percent slopes	0.3	1.0%		
LmB	Lucy loamy sand, 0 to 5 percent slopes	4.3	14.2%		
OrB	Orangeburg loamy sand, 2 to 5 percent slopes	25.5	83.8%		
OsC2	Orangeburg sandy clay loam, 5 to 8 percent slopes, eroded	0.3	1.0%		
Totals for Area of Interest		30.4	100.0%		

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

MAP	INF	ORM	ATION
-----	-----	-----	-------

The soil surveys that comprise your AOI were mapped at 1:20,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Glascock and Jefferson Counties, Georgia Survey Area Data: Version 14, Jun 8, 2020

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Oct 17, 2015—Apr 3, 2017

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Soil Health - Soil Reaction (pH)

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI	
FuC	Fuquay loamy sand, 5 to 8 percent slopes	5.2	0.3	1.0%	
LmB	Lucy loamy sand, 0 to 5 percent slopes	5.3	4.3	14.2%	
OrB	Orangeburg loamy sand, 2 to 5 percent slopes	5.1	25.5	83.8%	
OsC2	Orangeburg sandy clay loam, 5 to 8 percent slopes, eroded	5.0	0.3	1.0%	
Totals for Area of Interest			30.4	100.0%	

Description

Soil reaction (pH) is a measure of acidity or alkalinity. Chemically, it is a measurement of the hydrogen ion activity [H+] in the soil solution. The pH scale ranges from 0 to 14; a pH of 7 is considered neutral. If pH values are greater than 7, the solution is considered basic or alkaline; if they are below 7, the solution is acidic.

Significance:

The acidity or alkalinity of a soil affects the availability of plant nutrients, the activity of microorganisms, and the solubility of soil minerals (Brady, 1990). In general, pH values between 6 and 7.5 are optimum for general crop growth. Sitespecific interpretations for soil health will depend on specific land uses and crop tolerances. In acid soils, calcium and magnesium, nitrate-nitrogen, phosphorus, boron, and molybdenum are deficient but aluminum and manganese are abundant, in some cases at levels toxic to some plants (USDA-NRCS, 2008). Phosphorus, iron, copper, zinc, and boron are frequently deficient in very alkaline soils. Bacterial populations and activity decline at low pH levels, whereas fungi adapt to a large range of pH (acidic and alkaline). Nitrification and nitrogen fixation are also inhibited by low pH (USDA-NRCS, 2008). To increase pH, liming, adding organic residues rich in basic cations, and rotating crops to interrupt the acidifying effect of leguminous crops are effective. Applying ammonium-based fertilizers, urea, sulfur, or ferrous sulfate; irrigating with acidifying fertilizers; or using acidifying residues (acid moss, pine needles, sawdust) decrease soil pH (USDA-NRCS, 2008).

Factors Affecting Soil Reaction:

Inherent factors.—The natural soil pH reflects the combined effects of climate, vegetation, topography, parent material, and time. Temperature and rainfall are two major factors that control the intensity of leaching and soil mineral weathering. Acidity is generally associated with leached soils, and alkalinity is generally associated with soils in drier regions. In arid climates, soil weathering and leaching are less intense, cations accumulate, and the soil becomes neutral or alkaline. In soils where the pH is less than 5, aluminum becomes soluble and reacts with water to produce hydrogen ions. Sandy soils may acidify more easily compared to clay soils because they have a low buffering capacity and tend to leach more readily. Vegetation has an effect on soil pH through the type of organic matter that is added; certain types of vegetation are soil acidifying (USDA-NRCS, 2008).

Dynamic factors.—The conversion of uncultivated land into cropland can result in drastic pH changes after a few years. These changes are caused by the removal of cations by crops, the acceleration of leaching, the effect of fertilizers and amendments, and the variations in organic matter content and soil buffering capacity (USDA-NRCS, 2008). Inorganic amendments (lime and gypsum) and organic amendments rich in cations increase soil pH. Ammonium from organic matter mineralization (nitrification), ammonium-based fertilizers, and sulfur compounds lower the pH. High rates of water percolation and infiltration can increase the leaching of cations and accelerate soil acidification.

Measurement:

The pH reported here is measured using the 1:1 soil to water ratio method (Soil Survey Staff, 2014). A crushed soil sample is mixed with an equal amount of water, and the pH of the suspension is measured.

References:

Brady, N.C. 1990. The nature and properties of soils. 10th ed. Macmillan Publishers, NY.

Smith, J.L., and J.W. Doran. 1996. Measurement and use of pH and electrical conductivity for soil quality analysis. In: J.W. Doran and A.J. Jones (eds.) Methods for Assessing Soil Quality. Soil Science Society of America Special Publication 49:169-185.

Soil Survey Staff. 2014. Kellogg Soil Survey Laboratory methods manual. Soil Survey Investigations Report No. 42, Version 5.0. R. Burt and Soil Survey Staff (eds.). U.S. Department of Agriculture, Natural Resources Conservation Service.

U.S. Department of Agriculture, Natural Resources Conservation Service. 2008. Soil quality indicators—Soil pH.

Rating Options

Aggregation Method: Dominant Component Component Percent Cutoff: None Specified Tie-break Rule: Higher Interpret Nulls as Zero: No Layer Options (Horizon Aggregation Method): Depth Range (Weighted Average) Top Depth: 1 Bottom Depth: 25 Units of Measure: Inches

WHITE CLOVER

You are a cattle farmer in Georgia. You grow white clover in your fields for forage. You need to design a management plan to increase pollinator activity on your farm to increase forage production.

Sun Requirements: Full sun Soil Type: Sandy, Ioamy, clay Soil pH: Acidic, neutral Bloom Time: Spring, fall Flower Color: White Hardiness Zones: 3, 4, 5, 6, 7, 8, 9, 10

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

MAP L	EGEND	MAP INFORMATION
Area of Interest (AOI) Area of Interest (AOI)	Spoil AreaStony Spot	The soil surveys that comprise your AOI were mapped at 1:24,000.
Area of Interest (AOI) Soils Soil Map Unit Polygons Soil Map Unit Points Soil Map Unit Points Special Point Features Image:	 Stony Spot Stony Spot Very Stony Spot Wet Spot Other Special Line Features Water Features Streams and Canals Transportation Her Rails Interstate Highways US Routes Major Roads Local Roads Background Aerial Photography 	 Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Decatur County, Georgia Survey Area Data: Version 15, Jun 8, 2020 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Feb 11, 2016—Dec 15, 2017
 Severely Eroded Spot Sinkhole Slide or Slip 		The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
DoA	Dothan loamy sand, 0 to 2 percent slopes	1.1	1.8%
DoB	Dothan loamy sand, 2 to 5 percent slopes	11.2	18.9%
TfB	Tifton loamy sand, 2 to 5 percent slopes	44.2	74.5%
W	Water	2.8	4.8%
Totals for Area of Interest		59.4	100.0%

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

MAP	INFO	RMAT	ION
-----	------	------	-----

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Decatur County, Georgia Survey Area Data: Version 15, Jun 8, 2020

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Feb 11, 2016—Dec 15, 2017

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Soil Health - Soil Reaction (pH)

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI	
DoA	Dothan loamy sand, 0 to 2 percent slopes	5.3	1.1	1.8%	
DoB	Dothan loamy sand, 2 to 5 percent slopes	5.3	11.2	18.9%	
TfB	Tifton loamy sand, 2 to 5 percent slopes	5.8	44.2	74.5%	
W	Water		2.8	4.8%	
Totals for Area of Interest			59.4	100.0%	

Description

Soil reaction (pH) is a measure of acidity or alkalinity. Chemically, it is a measurement of the hydrogen ion activity [H+] in the soil solution. The pH scale ranges from 0 to 14; a pH of 7 is considered neutral. If pH values are greater than 7, the solution is considered basic or alkaline; if they are below 7, the solution is acidic.

Significance:

The acidity or alkalinity of a soil affects the availability of plant nutrients, the activity of microorganisms, and the solubility of soil minerals (Brady, 1990). In general, pH values between 6 and 7.5 are optimum for general crop growth. Sitespecific interpretations for soil health will depend on specific land uses and crop tolerances. In acid soils, calcium and magnesium, nitrate-nitrogen, phosphorus, boron, and molybdenum are deficient but aluminum and manganese are abundant, in some cases at levels toxic to some plants (USDA-NRCS, 2008). Phosphorus, iron, copper, zinc, and boron are frequently deficient in very alkaline soils. Bacterial populations and activity decline at low pH levels, whereas fungi adapt to a large range of pH (acidic and alkaline). Nitrification and nitrogen fixation are also inhibited by low pH (USDA-NRCS, 2008). To increase pH, liming, adding organic residues rich in basic cations, and rotating crops to interrupt the acidifying effect of leguminous crops are effective. Applying ammonium-based fertilizers, urea, sulfur, or ferrous sulfate; irrigating with acidifying fertilizers; or using acidifying residues (acid moss, pine needles, sawdust) decrease soil pH (USDA-NRCS, 2008).

Factors Affecting Soil Reaction:

Inherent factors.—The natural soil pH reflects the combined effects of climate, vegetation, topography, parent material, and time. Temperature and rainfall are two major factors that control the intensity of leaching and soil mineral weathering. Acidity is generally associated with leached soils, and alkalinity is generally associated with soils in drier regions. In arid climates, soil weathering and leaching are less intense, cations accumulate, and the soil becomes neutral or alkaline. In soils where the pH is less than 5, aluminum becomes soluble and reacts with water to produce hydrogen ions. Sandy soils may acidify more easily compared to clay soils because they have a low buffering capacity and tend to leach more readily. Vegetation has an effect on soil pH through the type of organic matter that is added; certain types of vegetation are soil acidifying (USDA-NRCS, 2008).

Dynamic factors.—The conversion of uncultivated land into cropland can result in drastic pH changes after a few years. These changes are caused by the removal of cations by crops, the acceleration of leaching, the effect of fertilizers and amendments, and the variations in organic matter content and soil buffering capacity (USDA-NRCS, 2008). Inorganic amendments (lime and gypsum) and organic amendments rich in cations increase soil pH. Ammonium from organic matter mineralization (nitrification), ammonium-based fertilizers, and sulfur compounds lower the pH. High rates of water percolation and infiltration can increase the leaching of cations and accelerate soil acidification.

Measurement:

The pH reported here is measured using the 1:1 soil to water ratio method (Soil Survey Staff, 2014). A crushed soil sample is mixed with an equal amount of water, and the pH of the suspension is measured.

References:

Brady, N.C. 1990. The nature and properties of soils. 10th ed. Macmillan Publishers, NY.

Smith, J.L., and J.W. Doran. 1996. Measurement and use of pH and electrical conductivity for soil quality analysis. In: J.W. Doran and A.J. Jones (eds.) Methods for Assessing Soil Quality. Soil Science Society of America Special Publication 49:169-185.

Soil Survey Staff. 2014. Kellogg Soil Survey Laboratory methods manual. Soil Survey Investigations Report No. 42, Version 5.0. R. Burt and Soil Survey Staff (eds.). U.S. Department of Agriculture, Natural Resources Conservation Service.

U.S. Department of Agriculture, Natural Resources Conservation Service. 2008. Soil quality indicators—Soil pH.

Rating Options

Aggregation Method: Dominant Component Component Percent Cutoff: None Specified Tie-break Rule: Higher Interpret Nulls as Zero: No Layer Options (Horizon Aggregation Method): Depth Range (Weighted Average) Top Depth: 1 Bottom Depth: 25 Units of Measure: Inches